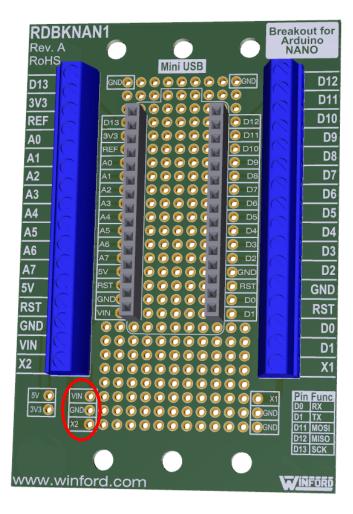
www.winford.com sales@winford.com



Powering Arduino NANO with a Higher Supply Voltage

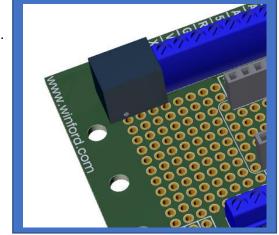
OVERVIEW

Let's say that you want to use the Arduino NANO in an application that only has a supply rail of 24V available. With a recommended VIN range of only 7V to 12V, the NANO is going to need a lower voltage rail to be developed from the 24V rail.

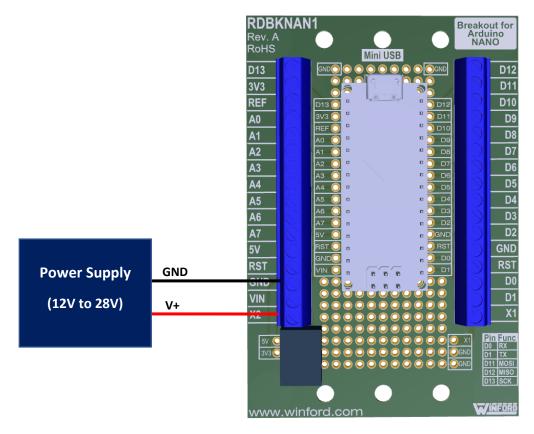
Winford Engineering product RDBKNAN1, a breakout board designed to be used with an Arduino NANO, includes a useful feature that is specifically intended to easily solve this problem. A group of 3 pads (X2, GND, and VIN) are oriented so that a suitable 3-terminal DC/DC converter can be added. Powered from 24V, the DC/DC converter will provide an output voltage that is appropriate for the NANO (e.g., 9V).

Winford Engineering, LLC

www.winford.com sales@winford.com



PROCEDURE


There are a number of 3-terminal DC-DC converters available. For reference, one reasonable option to consider is Recom Power part number R-78E9.0-0.5, which has an output of 9V (500mA rating) while accepting an input voltage range of 12V to 28V.

Simply solder the DC-DC converter onto the breakout board as indicated.

DC-DC Converter Pin	RDBKMIC1 Pad
Input (Pin 1)	X2
Ground (Pin 2)	GND
Output (Pin 3)	VIN

Now, simply plug the Arduino NANO into the RDBKNAN1 breakout board, and provide power (24V) to the X2 terminal block position. This will provide power to the input of the DC-DC converter, and the DC-DC converter output will provide 9V to VIN on the Arduino NANO.

(Note that the power supply must be connected to terminal block position X2, not VIN!)